The decomposition of the hypermetric cone into L-domains
نویسندگان
چکیده
The hypermetric cone HYPn+1 is the parameter space of basic Delaunay polytopes in n-dimensional lattice. The cone HYPn+1 is polyhedral; one way of seeing this is that modulo image by the covariance map HYPn+1 is the union of a finite set of L-domains, i.e., of parameter space of full Delaunay tessellations. In this paper, we study this partition of the hypermetric cone into Ldomains. In particular, it is proved that the cone HYPn+1 of hypermetrics on n + 1 points contains exactly 1 2 n! principal L-domains. We give a detailed description of the decomposition of HYPn+1 for n = 2, 3, 4 and a computer result for n = 5 (see Table 2). Remarkable properties of the root system D4 are key for the decomposition of HYP5.
منابع مشابه
The hypermetric cone is polydedral
The hypermetric cone Hn is the cone in the space R n(n1)/2 of all vectors d = (dij) 1 <i< j <_ n satisfying the hypermetric inequalities: El<_i<j<n zjzjdij ~0 for all integer vectors z in Z n with E l < i < n zi = 1. We explore connections of the hypermetric cone with quadratic forms and the geometry of numbers (empty spheres and L-polytopes in lattices). As an application, we show that the hyp...
متن کاملThe Hypermetric Cone on 8 Vertices and Some Generalizations
The lists of facets – 298, 592 in 86 orbits – and of extreme rays – 242, 695, 427 in 9, 003 orbits – of the hypermetric cone HY P8 are computed. The first generalization considered is the hypermetric polytope HY PPn for which we give general algorithms and a description for n ≤ 8. Then we shortly consider generalizations to simplices of volume higher than 1, hypermetric on graphs and infinite d...
متن کاملThe Hypermetric Cone on Seven Vertices
The hypermetric cone HY Pn is the set of vectors (dij)1≤i<j≤n satisfying the inequalities
متن کاملA Bound on the K-gonality of Facets of the Hypermetric Cone and Related Complexity Problems
We give a bound on g h (n), the largest integer such that there is a g h (n)-gonal facet of the hypermetric cone Hyp n , g h (n) 2 n?2 (n?1)! This proves simultaneously the polyhedrality of the hypermetric cone. We give complete description of Delau-nay polytopes related to facets of Hyp n. We prove that the problem determining hypermetricity lies in co-NP and give some related NP-hard problem.
متن کاملThe six-dimensional Delaunay polytopes
Given a lattice L, a full dimensional polytope P is called a Delaunay polytope if the set of its vertices is S ∩ L with S being an empty sphere of the lattice. Extending our previous work [DD01] on the hypermetric cone HY P7, we classify the six-dimensional Delaunay polytopes according to their combinatorial type. The list of 6241 combinatorial types is obtained by a study of the set of faces o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009